Let A,B,C,D,E be n*n matrices, each with non-zero determinant and ABCDE = I, where I = Identity matrix of order n, Then C =

Options :
  1. (B^-1)*(A^-1)*(E^-1)*(D*-1)
  2. (A^-1)*(B^-1)*(D^-1)*(E*-1)
  3. (ABDE)^-1
  4. (EDBA)*-1
Answer and Explanation :-

Answer: Option 1


ABCDE = I BCDE = (A^-1) Pre-Multiplying with A^-1 on both sides CDE = (B^-1)*(A^-1) Pre-Multiplying with B^-1 on both sides CD = (B^-1)*(A^-1)*(E^-1) Post-Multiplying with E^-1 on both sides C = (B^-1)*(A^-1)*(E^-1)*(D^-1) Post-Multiplying with D^-1 on both sides

How do you rate this queston?  Very Easy  Easy  Average  Above Average  Tough

Previous Question : A = a1 a2 a3 b1 b2 b3 c1 c2 c3 Then, a1*cof(b1) + a2*cof(b2) + a3*cof(b3) =

Next Question : If a row or coloumn of a matrix A undergoes transformation given by Ri+kRj or Ci+kCj respectively, t...

Click here for online test on Matrices


 (Getemail alerts when others member replies)

More available Categories:-

Love doesn't have to be on Valentine's Day. It doesn't have to be by the time you turn eighteen or thirty-three or fifty-nine. It doesn't have to conform to whatever is usual. It doesn't have to be kismet at once, or rhapsody by the third day.It just has to be. In time. In place. In spirt.It just has to be.
-David Levithan How They Met and Other Stories